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1. 

While the dynamic analysis of framed structures can be performed on the basis that they
have continuously distributed properties, the analyses are complex and practicable only
in the case of very simple structures. More conveniently, a finite element based approach
can be adopted in which framed structures are discretized into segments and the
displacements of the interconnecting nodes constitute the generalized co-ordinates (or
dynamic degreess of freedom) of the structure. The number of one-dimensional elements
selected depends on the physical arrangement of the structure. Not all of the degrees of
freedom need be considered in determining the response to an arbitrary dynamic load.
Kinematic constraints are adopted to reduce the degrees of freedom in order to save
computational effort without significant loss of accuracy.

As an extreme, for framed structures it is usually assumed that the floor slabs have
considerable in-plane rigidity and that the columns are inextensible. The mass is assumed
to be concentrated at the floors and to possess only translatory degrees of freedom. An
n-story plane frame thus has only n degrees of freedom along its plane. The structure is
then known as a shear building and is commonly used to model structures subjected to
horizontal ground motion. The computational effort is reduced considerably when this
form of discretization is adopted in a dynamic analysis. Also, a great reduction in the
computer memory requirement is achieved, since an n-story tall plane framed structure has
only n degrees of freedom in the plane of deformation considered, irrespective of the
number of bays of which it is comprised. Since mode superposition is feasible in an elastic
analysis, the shear building representation also permits use of an approximate analysis of
the response to seismic excitation based on ground motion response spectra.

The adoption of the shear building discretization for the analysis of tall framed
structures subjected to horizontal seismic excitation is not only very common in practice
but is also found in the literature, and the topics include the effects of soil–structure
interaction on the dynamic behavior of such structures [1, 2], the effects of torsional
coupling on earthquake forces in buildings [3, 4] the optimum design of steel frames under
earthquake loading [5] and the study of the along wind motion of multi-storey buildings
[6].

It can be anticipated that shear building discretization will result in some difference in
the fundamental period as compared to a more realistic finite element based model.
Furthermore, the fundamental mode of vibration for the shear building is a very simplistic
approximation of the elaborate vibration shape yielded by a finite element representation.
These two features could result in the response yielded by the shear building differing from
that for the more exact finite element model.

In this note, we examine the appropriateness of representing open-plane frame structures
subjected to horizontal seismic excitation by the shear building model when it is feasible
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(at the cost of a little extra storage requirement and computational effort) to treat such
frames as assemblages of one-dimensional finite elements.

2.   

In Figure 1(a) are shown the plans of typical open-framed reinforced concrete long
structures of flat slab construction, wherein transverse frames can be isolated, as shown
shaded, and analyzed for the response to a horizontal ground motion transverse to the
longitudinal axis. For each structure, the slabs with columns constitute flexible frames
which are rigidly fixed at the base.

For the purpose of this study, it was assumed that the transverse frames were spaced
at 4·0 m centers and six typical frames were considered, viz., four- and eight-storey frames
each having one, two and three bays. Some typical four-storey frames are shown in
Figure 1(b). For all of the frames, a uniform inter-storey height of 3 m and bay span of
6 m were adopted. Furthermore, each slab was taken to be 0·3 m thick and 4 m wide, and
the column sections were uniform over the height of the structure. For four-storey frames,
column sections bd of 0·32 m×0·32 m, 0·3 m×0·4 m and 0·2 m×0·5 m were used, where
b is the transverse dimension and d is the in-plane dimension, in order to have EI (flexural
rigidity) values ranging between 19·2 MN m2 and 45·8 MN m2. For eight-storey frames, bd
values of 0·3 m×0·4 m, 0·2 m×0·5 m and 0·3 m×0·6 m were adopted (EI varying from
35·2 MN m2 to 118·8 MN m2). Linear elastic analysis was performed with the following
material properties: modulus of elasticity of concrete, Ec =22 GPa and mass density,
r=2400 kg/m3.

To examine the adequacy of the shear building for representing open-plane frames, a
finite element type of representation of each frame was adopted as the standard. Nodes
were located at column–slab junctions and at the mid-spans of slabs. Each node possesses
three degrees of freedom. The elements have uniformly distributed inertia and elastic
properties. Cubic Hermitian polynomials were used to evaluate the mass and stiffness

Figure 1. The plan and elevation of typical open-plane frames considered: (a) plan; (b) elevation of typical
four-storey frames.
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coefficients. The system has a consistent mass matrix. This discretization is hereafter
referred to as consistent mass (CM) model.

In the shear building (SB) model, the mass of the structure was lumped at the floor levels.
The stiffnesses of the columns at each floor level were added together and the stiffness
matrix of the SB model was derived assuming that only horizontal displacements of the
floors occur.

3.        

The first 30 s of the horizontal acceleration components of five earthquakes were used
as seismic loading to evaluate the performance of the SB model of each structure against
that of the more refined CM model. Details of the accelerograms used are presented in
Table 1.

The analysis consisted of determining the eigenvalues and eigenvectors for the
undamped system using the Jacobi method. For each typical structure, the response of
the CM model and the SB model to the seismic excitations selected was obtained in
the time domain (using modal analysis) by evaluating the Duhamel integral, and the
results are reported in the form of peak lowest storey column shears. The damping
ratio was constant for all modes of vibration. Three magnitudes of damping ratio were
adopted, viz. 5%, 10% and 15%, to cover the range of damping encountered in practice
reference [7].

For the SB model, all of the modes of vibration were considered in evaluating the
response. The corresponding CM model possesses a far larger number of dynamic
degrees of freedom. However, it is well recognized that just a few of the lowest modes
of vibration are adequate to define the response of a structure. In particular,
computations for a four-storey one-bay frame subjected to seismic excitation Q5 with a
damping ratio of 5% indicated that the fundamental mode alone yields 95% of the
response for the SB model and about 96% for the CM model. However, to determine the
response of any frame to the excitation using the CM model, the number of lowest order
modes used was restricted to the number of degrees of freedom, n, of the corresponding
SB model.

T 1

Details of the earthquakes selected

Spectral pseudo-
Description of Maximum velocity Response
earthquakes acceleration for j=5% spectrum

ZXXXXXCXXXXXV ZXXXCXXXV ZXXXCXXXV intensity
Value Time Max. Sv Period for j=5%,

Description Symbol (m/s2) (s) (m/s) (s) SI (m)

Uttarakashi, Q1 −2·372 6·22 0·464 0·249 0·432
1991 (N15°W)
Uttarakashi (Abhat), Q2 2·484 4·26 0·541 0·887 0·697
1991 (N85°E)
Eurake, Q3 1·973 7·10 0·697 1·413 1·038
1954 (N46°W)
El Centro, Q4 2·101 11·44 0·724 2·067 1·119
1940 (S90°W)
El Centro, Q5 3·417 2·12 0·809 1·331 1·331
1940 (S00°E)*

*Also known as NS component of El Centro. The notation used here is also seen in reference [8].
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4.   

4.1. Periods of vibration and mode shapes
In Table 2 are indicated the four largest periods of vibration for four-storey and

eight-storey frames, having one, two and three bays for column dimensions of
0·2 m×0·5 m (EI=45·8MN m2). Irrespective of the number of storeys or bays, the SB
model yielded smaller periods of vibration for all of its modes compared to the CM model.
This may be due to the fact that the stiffness matrix for the shear building is evaluated
taking account only of the translational degrees of freedom of the structure. In both
discretizations, the fundamental period increases as the number of bays increases.

It is also seen in Table 2 that the ratio of fundamental period (Tsb ) of the SB model
to that of the CM model (Tcm ) varies non-uniformly with the number of bays, but is always
less than unity. The period ratio was also determined for a practical range of column EI
values (19·2–45·8 MN m2 for four-storey frames and 35·2–118·8 MN·m2 for eight-storey
frames). As seen in Figure 2, for any type of frame the period ratio increases with the
period of the CM mdel but, due to practical limitations in the choice of EI values, it does
not exceed 0·9 for the four-storey frame and 0·811 for the eight storey frame. Thus the
SB model does not yield a comparable fundamental period over a practical range of
column stiffness for the frames considered.

In Figure 3 are shown the fundamental modes of vibration of the SB and CM models
of a four-storey one-bay frame. Compared to the SB model, the fundamental mode of the
CM model shows small rotations, apart from storey translations. As reported earlier, the
fundamental mode of vibration accounts for over 95% of the maximum response to seismic
excitation. It is likely that differences in the fundamental period and in the mode shape
may lead to the results of seismic analysis based on the SB model being greatly at variance
with those obtained when a more realistic finte element type discretization is used.

4.2. Response to seismic excitation
It is common to report the results of seismic analysis in terms of relative horizontal

displacements at the locations of interest. However, the member end actions mobilized in
the columns are functions of both relative nodal displacements and nodal rotations which

T 2

Periods (s) of four- and eight-storey frames (column EI=45·8 MN m2)

One-bay frame Two-bay frame Three-bay frame
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

Mode no. SB CM SB CM SB CM

Four-storey frame
1 0·385 0·511 0·395 0·558 0·466 0·576
2 0·134 0·166 0·139 0·184 0·162 0·191
3 0·088 0·097 0·093 0·111 0·106 0·116
4 0·072 0·085 0·079 0·091 0·087 0·093

Tsb/Tcm 0·753 0·708 0·809

Eight-storey frame
1 0·727 1·068 0·832 1·119 0·880 1·140
2 0·245 0·345 0·281 0·371 0·297 0·377
3 0·151 0·194 0·172 0·217 0·182 0·221
4 0·112 0·136 0·128 0·157 0·135 0·161

Tsb /Tcm 0·681 0·744 0·772
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Figure 2. The relationship between the period ratio and the period of the building. —w—, one-bay frame;
—q—, two-bay frame; —r—, three-bay frame.

can amplify or attenuate the effect of relative displacements. The effect of seismic
excitation is therefore reported here in terms of column shear mobilized.

The maximum lowest storey shear and the duration of excitation at which it is mobilized
is shown in Table 3(a) for four-storey structures of one, two and three bays for the five
accelerograms adopted, when the structures have a column flexural rigidity of 45·8 MNm2.
These results pertain to a constant modal damping ratio of 5%. The data in Table 3(b)
refers to eight-storey structures having the same column EI value and damping ratio. It

Figure 3. Fundamental mode shapes for a four-storey one-bay structure: (a) SB model; (b) CM model.
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T 3

Maximum absolute shear (Column EI=45·8 MNm2)
(a) Four-store structures

One-bay Two-bay Three-bay
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

Force Time Force Time Force Time
Excitation Model (kN) (s) (kN) (s) (kN) (s)

Q1 CM 119·05 6·70 112·82 7·00 117·36 7·00
SB 188·05 5·80 212·70 5·80 179·66 5·90

Q2 CM 170·14 4·70 195·93 5·80 233·70 5·90
SB 122·58 5·70 149·75 5·70 229·52 4·40

Q3 CM 114·88 7·10 150·46 8·00 172·12 7·20
SB 99·22 6·70 111·19 6·70 152·52 7·10

Q4 CM 205·23 2·10 219·09 2·10 245·24 11·90
SB 168·49 11·50 214·13 11·50 252·85 2·10

Q5 CM 268·66 2·40 247·28 2·20 378·14 2·20
SB 211·22 5·00 230·72 5·00 419·53 5·10

(b) Eight-storey structures

One-bay Two-bay Three-bay
ZXXXCXXXV ZXXXCXXXV ZXXXCXXXV

Force Time Force Time Force Time
Excitation Model (kN) (s) (kN) (s) (kN) (s)

Q1 CM 73·48 4·40 101·20 5·60 114·64 5·60
SB 216·49 6·00 199·55 6·10 179·75 6·10

Q2 CM 114·37 8·20 122·80 7·70 128·66 7·70
SB 191·30 4·90 363·02 6·80 403·46 6·40

Q3 CM 217·41 8·00 264·24 8·00 285·59 8·00
SB 260·79 7·20 360·51 7·30 375·06 7·30

Q4 CM 166·00 12·80 178·20 12·20 205·21 12·20
SB 292·04 12·00 304·20 12·10 295·30 12·10

Q5 CM 243·23 4·40 261·75 3·00 278·69 3·00
SB 364·62 2·70 492·30 5·80 478·71 5·90

can clearly be seen that the response yielded by the SB model varies significantly from that
yielded by the CM model. The excitation duration at which it occurs also differs. Although
the fundamental period of the SB model is always less than that of the corresponding CM
model, the maximum lowest storey column shear yielded by the SB model can be more
or less than that yielded by the CM model. This indicates that the frequency content of
the selected excitation is important at low damping ratios (5%) where small changes in
period can yield widely different pseudo-spectral velocity (Sv ) values, as can be seen in
Figure 4. As a result, for any particular frame the response ratio (which is defined as the
ratio of maximum absolute first storey shear of the SB model to that of the CM model)
is less than or greater than 1·0 depending on the frequency content (pseudo-spectral
velocity spectrum) of the excitation. As seen in Table 4(a), the response ratio is rarely close
to unity.

For higher levels of damping, the response spectrum of an excitation is smoothed out,
as can be seen in Figure 4, in which the response spectra for Q2 for damping ratios of
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Figure 4. Response spectra of earthquake Q2 (j=5% and j=15%).

5% and 15% are presented. As a result, for higher levels of damping small differences in
fundamental period should not result in much variation in Sv . However, as seen from
Tables 4(b) and 4(c), which are for damping ratios of 10% and 15% respectively, the
response ratio is not influenced very significantly by the damping level. Therefore, while
the Sv values can be quite close, the differences in fundamental mode shapes of the SB
model and the CM model result in the response ratio not being unity. The SB model
ignores the rotary inertia forces which are generated in the more realistic CM model.

On the other hand, except for the storage requirements of the larger mass and stiffness
matrices required for the CM model, and the additional computational time needed when
working with large matrices to extract the eigenvalues and eigenvectors, there is no
significant saving in computational time when the shear building is used instead of the CM
model (with the number of modes used in the latter being restricted to the number of
floors). It is therefore questionable whether using the SB model and obtaining results which
rarely concur with those yielded by the CM model can be justified.

5. 

A shear building yields a stiffer system, as the fundamental frequency is always higher
than that of the consistent mass (CM) model, irrespective of the number of storeys and
the number of bays. This is chiefly due to only translatory degrees of freedom being
considered in evaluating the stiffness of the system. While the difference in fundamental
frequency yielded by both models can be reduced by having more flexible columns, due
to practical considerations, the shear building generally has a fundamental frequency over
10% higher than that of the CM model.

The difference in the fundamental period and in the fundamental mode shape result in
responses evaluated using the shear building (SB) model varying considerably from those
yielded by a more refined finite element based model for low damping ratios.
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The variation in responses obtained using a shear building and consistent mass models
for analysis persists even for large damping ratios.

The results show that the shear building model is a very unrealistic representation of
framed structures subjected to horizontal seismic excitation.

T 4

Response ratios of frames due to earthquake excitations
(a) j=5%

Period of
shear Period Response ratio for excitations

building, ratio, Frame ZXXXXXXXXXCXXXXXXXXXV
Tsb Tsb /Tcm type† Q1 Q2 Q3 Q4 Q5

0·385 0·753 4-1C 1·58 0·72 0·86 0·82 0·79
0·395 0·708 4-2C 1·88 0·97 0·78 0·98 0·82
0·442 0·796 4-1B 1·68 0·87 0·71 0·88 0·76
0·453 0·740 4-2B 1·43 1·36 0·96 1·37 1·15
0·464 0·533 8-1D 1·47 1·05 0·85 1·83 1·79
0·466 0·809 4-3C 1·53 0·98 0·90 1·03 1·11
0·528 0·597 8-2D 1·72 1·50 1·14 2·32 1·93
0·534 0·841 4-3B 1·30 1·50 1·15 1·39 1·37
0·557 0·627 8-3D 1·55 1·48 1·18 2·12 2·13
0·595 0·869 4-1A 0·83 1·55 1·05 1·30 1·53
0·610 0·793 4-2A 1·08 1·39 0·99 1·17 1·24
0·721 0·900 4-3A 1·17 0·92 1·03 1·17 1·17
0·727 0·681 8-1C 2·95 1·67 1·20 1·76 1·50
0·832 0·744 8-2C 2·05 2·95 1·36 1·71 1·89
0·835 0·736 8-1B 1·79 2·83 1·27 1·51 1·82
0·880 0·772 8-3C 1·57 3·14 1·31 1·44 1·72
0·954 0·787 8-2B 1·00 2·71 1·26 0·87 1·79
1·009 0·811 8-3B 0·89 2·04 1·22 1·01 1·95

(b) j=10%

Period of
shear Period Response ratio for excitations

building, ratio, Frame ZXXXXXXXXXCXXXXXXXXXV
Tsb Tsb /Tcm type† Q1 Q2 Q3 Q4 Q5

0·385 0·753 4-1C 1·79 0·72 0·84 0·88 0·71
0·395 0·708 4-2C 1·93 1·01 0·82 0·99 0·84
0·442 0·796 4-1B 1·73 1·00 0·76 0·89 0·78
0·453 0·740 4-2B 1·36 1·32 0·92 1·42 1·05
0·464 0·533 8-1D 1·93 1·25 0·87 1·74 1·60
0·466 0·809 4-3C 1·54 1·27 0·90 1·15 0·94
0·528 0·597 8-2D 1·88 1·48 1·03 2·19 2·11
0·534 0·841 4-3B 1·17 1·32 0·99 1·43 1·31
0·557 0·627 8-3D 1·81 1·43 1·19 2·07 2·37
0·595 0·869 4-1A 0·82 1·20 1·01 1·14 1·47
0·610 0·793 4-2A 1·11 1·25 1·07 1·27 1·28
0·721 0·900 4-3A 1·27 0·91 1·08 1·22 1·18
0·727 0·681 8-1C 2·84 1·75 1·38 1·65 1·55
0·832 0·744 8-2C 2·14 2·71 1·46 1·47 1·59
0·835 0·736 8-1B 1·85 2·58 1·35 1·35 1·51
0·880 0·772 8-3C 1·68 2·95 1·46 1·32 1·57
0·954 0·787 8-2D 1·03 2·48 1·41 1·25 1·85
1·009 0·811 8-3B 0·88 2·09 1·35 1·25 1·86
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Table 4(c) j=15%

Period of
shear Period Response ratio for excitations

building, ratio, Frame ZXXXXXXXXXCXXXXXXXXXV
Tsb Tsb /Tcm type† Q1 Q2 Q3 Q4 Q5

0·385 0·753 4-1C 1·90 0·81 0·83 0·94 0·72
0·395 0·708 4-2C 1·87 1·18 0·84 1·02 0·88
0·442 0·796 4-1B 1·69 1·07 0·78 0·93 0·81
0·453 0·740 4-2B 1·23 1·33 0·89 1·33 1·08
0·464 0·533 8-1D 2·00 1·33 0·89 1·72 1·69
0·466 0·809 4-3C 1·62 1·32 0·90 1·17 0·93
0·528 0·597 8-2D 1·84 1·48 1·10 2·05 2·23
0·534 0·841 4-3B 1·14 1·35 1·00 1·41 1·28
0·557 0·627 8-3D 1·92 1·46 1·23 1·96 2·43
0·595 0·869 4-1A 0·85 1·09 1·00 1·17 1·38
0·610 0·793 4-2A 1·13 1·16 1·11 1·27 1·39
0·721 0·900 4-3A 1·28 1·02 1·11 1·22 1·25
0·727 0·681 8-1C 2·43 1·87 1·43 1·51 1·59
0·832 0·744 8-2C 1·91 2·50 1·55 1·41 1·59
0·835 0·736 8-1B 1·70 2·37 1·46 1·32 1·50
0·880 0·772 8-3C 1·58 2·64 1·58 1·34 1·61
0·954 0·797 8-2B 1·09 2·38 1·55 0·37 1·69
1·009 0·811 8-3B 0·91 2·02 1·48 1·38 1·80

† The characters A, B, C and D represent column EI values of 19·2, 35·2, 45·8 and 118·8 MNm2, respectively.
Typically, 4-1C signifies a four-storey one-bay frame with column EI=45·8 MNm2.
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